
CSCI2510 Computer Organization

Lecture 10: Pipelining

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 6

mailto:mcyang@cse.cuhk.edu.hk

Why Pipelining?

• Real-life Example: Four loads of laundry that need

to be washed (for 30 minutes), dried (for 40

minutes), and folded (for 20 minutes).

2

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

Without Pipelining

(30 + 40 + 20) ∗ 4

= 360 minutes in total

With Pipelining

30 + 40 ∗ 4 + 20

= 210 minutes in total

CSCI2510 Lec10: Pipelining 2022-23 T1

Outline

• Pipelining in RISC-Style Processor

– Pipeline Organization

– Pipeline Stall: Hazards

1) Data Dependencies

2) Memory Delays

3) Branch Delays

4) Resource Limitations

• Pipelining in CISC-Style Processor

3CSCI2510 Lec10: Pipelining 2022-23 T1

• The execution can be

arranged into five stages:

 Fetch an instruction and

increment the PC.

 Decode the instruction &

read the source registers.

 Perform an ALU

operation.

 Read/write memory data.

 Write into the dest. reg.

4CSCI2510 Lec10: Pipelining 2022-23 T1 44

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

control signals
...

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

Fetch Execution

Dest.

Reg.

Instr.

Fetch

Src.

Reg.
ALU

Mem.

R/W

Recall: Five-Stage Organization (RISC)

Pipelined Five-Stage Organization (1/2)

• The five-stage organization can allow instructions

to be fetched and executed in a pipelined way easily.

– The five stages are labeled as: F, D, C, M, and W.

– At any time, each stage is working on a different instruction.

– Ideally, instructions are done at the rate of one per cycle.

• Note: The time needed to perform any instruction is not changed:

Any one instruction still takes (at least) five cycles to complete.

5

Fetch ComputeDecode Memory Write

1 32 4 5 6 7

Fetch ComputeDecode Memory Write

Fetch ComputeDecode Memory Write

Ij

Ij+1

Ij+2

Clock

Cycle

CSCI2510 Lec10: Pipelining 2022-23 T1

6

Pipelined Five-Stage Organization (2/2)

Datapath

(operands & results)

Control signals for

stages

Reg. identifiers

and other info.

Instruction

Fetch

Inter-stage Buffer B1

Register

File

Instruction

Decode

Inter-stage Buffer B2

Compute

Inter-stage Buffer B3

Memory

Inter-stage Buffer B4

Write

CSCI2510 Lec10: Pipelining 2022-23 T1

• Inter-stage buffers carry the

info. from one stage to the next.

– B1 feeds Decode stage with the

newly-fetched instruction.

– B2 feeds Compute stage with:
• Two operands read from Register File;

• The src./dest. register identifiers;

• The immediate value from the instruction;

• The control signals (which move though

the entire pipeline via B2, B3, and B4).

– B3 holds the computed result or the

data to be written to the memory.

– B4 feeds Write stage with the value

to be written into Register File.

– Note: B1~B4 include the inter-stage

registers (i.e., RA/RB/RZ/RM/RY).

Class Exercise 10.1

• During the clock cycle 5, what

is the information held by the

inter-stage buffers (i.e., B1 to

B4), respectively?

7CSCI2510 Lec10: Pipelining 2022-23 T1

I1

I2

I3

Cycle

I4

Datapath

(operands & results)

Control signals for

stages

Reg. identifiers

and other info.

Instruction

Fetch

Inter-stage Buffer B1

Register

File

Instruction

Decode

Inter-stage Buffer B2

Compute

Inter-stage Buffer B3

Memory

Inter-stage Buffer B4

WriteI5

F CD M W

1 32 4 5 6 7

F CD M W

F CD M W

F CD M W

8

F CD M W

9

Outline

• Pipelining in RISC-Style Processor

– Pipeline Organization

– Pipeline Stall: Hazards

1) Data Dependencies

2) Memory Delays

3) Branch Delays

4) Resource Limitations

• Pipelining in CISC-Style Processor

9CSCI2510 Lec10: Pipelining 2022-23 T1

• If any pipeline stage requires more than 1 clock cycle,

other stages must wait, causing the pipeline to stall.

• Hazards: Conditions that cause the pipeline to stall.

– It might arise from  data dependencies,  memory delays,

 branch delays, and  resource limitations.

Reality: The Pipeline May Stall

10CSCI2510 Lec10: Pipelining 2022-23 T1

Ij+1

Ij+2

Cycle

Ij+3

Ij

F CD M (cache miss) W

1 32 4 5 6 7

F CD M W

8 9

F CD M W

wait

wait

F CD M W

10

1) Data Dependencies

• Pipeline may stall because of data dependencies.

• Consider the following two instructions:

Add R2, R3, #50

Sub R9, R2, #30

– There is a data dependency since R2 carries data from the

first instruction to the second.

• They must be performed in order to ensure the data consistency.

– The Decode is stalled for three cycles to delay reading R2

until cycle 6 by then the new value becomes available.

CSCI2510 Lec10: Pipelining 2022-23 T1 11

Sub

Cycle

Add

F C M W

1 32 4 5 6 7 8 9

F CD M WR2

D

C

Hardware Sol.: Operand Forwarding

CSCI2510 Lec10: Pipelining 2022-23 T1 12

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

A B

C

InA InB

#
i
m
m
e
d
i
a
t
e

v
a
l
u
e

MuxA

IR

• Operand forwarding can

alleviate the pipeline stalls due

to data dependencies.

• Consider the following two

instructions again:

Add R2, R3, #50

Sub R9, R2, #30

– The new value of R2 is actually

available at the end of cycle 3.

– Rather than stalling Sub, the

hardware can forward the value to

where it is needed in cycle 4.

– Additional hardware is needed to

make such forwarding possible.

Sub

Cycle

Add

F D M W

1 32 4 5 6

F CR2D M W

C

Class Exercise 10.2

• Consider the following instructions:

Add R2, R3, #100

Or R4, R5, R6

Sub R9, R2, #30

• How many clock cycles are required to complete the

execution when the operand forwarding technique is

not used or used, respectively?

– Note: The minimal number of cycles should be derived.

CSCI2510 Lec10: Pipelining 2022-23 T1 13

Software Sol.: NOP Instruction

• The compiler can also identify the data dependency

and insert NOP (No-operation) instructions to create

idle clock cycles (also called bubbles).

– Pros: simplified hardware

– Cons: larger code size, “non-reducing” total execution time

CSCI2510 Lec10: Pipelining 2022-23 T1 16

Cycle

Add

1 32 4 5 6 7 8 9

F CD M WR2

NOP F CD M W

NOP F CD M W

NOP F CD M W

Sub F CDR2 M W

Software Sol.: Instruction Reordering

• The compiler can further move “useful instructions”

into the NOP slots by instruction reordering.

– It must carefully consider data dependencies still.

– It can possibly improve performance and reduce code size.

• Depending on the extent to which NOP slots can be usefully filled.

CSCI2510 Lec10: Pipelining 2022-23 T1 17

Cycle

Add

1 32 4 5 6 7 8 9

F CD M WR2

Ij F CD M W

Ij+1 F CD M W

Ij+2 F CD M W

Sub F CDR2 M W

2) Memory Delays

• Delays arising from memory accesses are another

cause of pipeline stalls.

– E.g., a Load instruction may require more than one cycle to

obtain its operand from memory due to cache miss, which

causes all subsequent instructions to be delayed.

• Note: A memory access may take more than ten cycles, but the

figure shows only three cycles for simplicity.

– Question: How can we alleviate such pipeline stalls?
CSCI2510 Lec10: Pipelining 2022-23 T1 18

Ij+1

Cycle

Ij: Load

F CD M W

1 32 4 5 6 7 8 9

F CD M (cache miss) W

Ij+2 F CD M W

3) Branch Delays

• Branch instructions may also stall the pipeline.

– They must first be decoded or executed to determine

whether and where to branch.

– Branch Penalty: The delays caused by a branch instruction.

• It can be reduced by computing the branch target earlier.

CSCI2510 Lec10: Pipelining 2022-23 T1 19

Ij+1

Cycle

F C M W

1 32 4 5 6 7 8

F D M W

D

Ij+2 F M WD C

Ik F M WD C

Ij
(branch to Ik)

C

Ij+1

Cycle

F C M W

1 32 4 5 6 7 8

F CD M W

D

Ik F M WD C

Ij
(branch to Ik)

The branch target is computed in C.

Branch penalty: 2 clock cycles

The branch target is computed in D.

Branch penalty: 1 clock cycle

(The hardware must be modified.)

branch

penalty
branch penalty

(may be discarded)

(may be discarded)

(may be discarded)

Recall: Branch

CSCI2510 Lec10: Pipelining 2022-23 T1 20

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction

 PC  [PC] + branch offset

 No action

 No action

• The branch offset is from IR.

• MuxINC (in Instruction Address
Generator) is set to select offset.

Instruction

Address

Generator

Adder

PC MuxINC

4
Branch offset

from IR

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

PC_enable

INC_sel

PC_enable

Solution: Delayed Branching

• The location(s) that follows a branch instruction is

called the branch delay slot(s).

– Key Observation: The instruction(s) in the delay slot(s)

is always executed whether or not the branch is taken.

• Delayed Branching: The compiler may find a

“suitable instruction(s)” to fill the delay slot(s).

– One needed to be executed even when the branch is taken.

CSCI2510 Lec10: Pipelining 2022-23 T1 21

Add R7, R8, R9

Ij: Branch TARGET

Ij+1 (always executed)

...

TARGET Ik

Ij: Branch TARGET

Add R7, R8, R9

Ij+1

...

TARGET Ik

(a) Original sequence of instructions (b) Placing the Add instruction in the

branch delay slot

Class Exercise 10.3

• Suppose a pipelined processor has two branch delay

slots but does not employ the delayed branch.

• If 20 percent of the instructions executed are branch

instructions, what is the required number of clock

cycles to complete 100 instructions?

CSCI2510 Lec10: Pipelining 2022-23 T1 22

4) Resource Limitations (1/2)

• The pipeline stalls when there are insufficient

hardware resources to allow concurrent execution.

– If two instructions need to access the same resource in the

same clock cycle, one instruction must be stalled.

– Case 1: One instruction is accessing memory during the M

stage, while another is being fetched.

• Possible Solution: Separating instruction & data caches.

– Case 2: Two instructions require access to Register File at

the same time.

• Possible Solution: Equipping Register File with more

input and output ports.

• In general, this can be prevented by providing

additional hardware resources ($$$).

CSCI2510 Lec10: Pipelining 2022-23 T1 24

4) Resource Limitations (2/2)

CSCI2510 Lec10: Pipelining 2022-23 T1 25

Outline

• Pipelining in RISC-Style Processor

– Pipeline Organization

– Pipeline Stall: Hazards

1) Data Dependencies

2) Memory Delays

3) Branch Delays

4) Resource Limitations

• Pipelining in CISC-Style Processor

26CSCI2510 Lec10: Pipelining 2022-23 T1

Pipelining in CISC-Style Processors?

• Complications arise for pipelining in CISC processors:

– Reasons? CISC-style instructions are variable in size, may

have multiple memory operands, and may have more

complex addressing modes.

• Nonetheless, pipelined processors have still been

implemented for CISC-style instruction sets.

– For example, Core i7 architecture has a 14-stage pipeline.

– To reduce internal complexity, CISC-style instructions are

dynamically converted by the hardware into simpler RISC-

style micro-operations.

• This approach preserves code compatibility while making it possible

to use the aggressive performance enhancement techniques that

have been developed for RISC-style instruction sets.

CSCI2510 Lec10: Pipelining 2022-23 T1 27

Summary

• Pipelining in RISC-Style Processor

– Pipeline Organization

– Pipeline Stall: Hazards

1) Data Dependencies

2) Memory Delays

3) Branch Delays

4) Resource Limitations

• Pipelining in CISC-Style Processor

28CSCI2510 Lec10: Pipelining 2022-23 T1

